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Three key embedded system technologies 

 Technology 

 A manner of accomplishing a task, especially using 

technical processes, methods, or knowledge 

 Three key technologies for embedded systems 

 Processor technology 

 IC technology 

 Design technology 
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Processor technology 
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General-purpose (“software”)  

 The architecture of the computation engine used to implement a 
system’s desired functionality 

 Processor does not have to be programmable 

 “Processor” not equal to general-purpose processor 
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Processor technology 

total = 0; 

for (i = 0; i< N; i++)  
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 Processors vary in their customization for the problem at hand 
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General-purpose processors 

• Programmable device used in a variety 
of applications 
 Also known as “microprocessor” 

• Features 
 Program memory 
 General datapath with large register file and 

general ALU 

• User benefits 
 Low time-to-market and NRE costs 
 High flexibility 

• Drawbacks 

 High unit cost 

 Low Performance 

IR PC 

Register 

file 

General 
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for: 
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  for i =1 to … 
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memory 



General-purpose processors 

 

init:  daddi r8, r0, 0 

       daddi r9, r0, 40 

       daddi r10, r0, 0 

 for:  ld r11, M(r8) 

       ld r12, C(r8) 

       mult r11, r12 

       mflo r11 

       dadd r10, r10, r11 

       daddi r8, r8, 8 

       bne r8, r9, for    

       sd r10, total(r0)  

 

total = 0; 

for (i = 0; i< N; i++)  

   total += C[i]*M[i]; 
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Single-purpose processors 

• Digital circuit designed to execute exactly 

one program 
 a.k.a. coprocessor, accelerator or peripheral 

• Features 
 Contains only the components needed to 

execute a single program 

 No program memory 

• Benefits 
 Fast 

 Low power 
Small size 

• Drawbacks 

 No flexibility, high time-to-market, high NRE cost 
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Single-purpose processors 
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Application-specific processors 

• Programmable processor optimized for a 

particular class of applications having common 

characteristics 
 Compromise between general-purpose and single-

purpose processors 

• Features 
 Program memory 

 Optimized datapath 

 Special functional units 

• Benefits 
 Some flexibility, good performance, size and power 

• Drawbacks 

 High NRE cost (processor and compiler) 

• Examples: Microcontroller, DSP 

IR PC 

Registers 

Custom 

ALU 

Datapath Controller 

Program 

memory 

Assembly code for: 
 

 total = 0; 

 for(i =0;i<N;i++)         

total+=C[i]*M[i]; 

Control  
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memory 



Application-specific processors 

 

total = 0; 

for (i = 0; i< N; i++) 

   total += C[i]*M[i]; 

 

Macc Ra, Rb, Rc   ; Ra=Ra+Rb*Rb 

 

Bltid Ra, Rb, target  ; if(Ra<Rb){Ra+=8; j target}  

init:  daddi r8, r0, 0 

       daddi r9, r0, 32 

       daddi r10, r0, 0 

 for:  ld r11, M(r8) 

       ld r12, C(r8) 

       macc r10, r11, r12 

       bltid r8, r9, for 

       sd r10, total(r0) 
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Digital Signal Processors (DSP) 

• For signal processing applications 

– Large amounts of digitized data, often streaming 

– Data transformations must be applied fast 

– e.g., cell-phone voice filter, digital TV, music synthesizer 

• DSP features 

– Several instruction execution units 

– Multiple-accumulate single-cycle instruction, other instrs. 

– Efficient vector operations – e.g., add two arrays 

• Vector ALUs, loop buffers, etc. 
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A Common ASIP: Microcontroller 

• For embedded control applications 
– Reading sensors, setting actuators 

– Mostly dealing with events (bits): data 
is present, but not in huge amounts 

– e.g. disk drive, digital camera 
(assuming SPP for image 
compression), washing machine, 
microwave oven 

•Microcontroller features 
– On-chip peripherals 

• Timers, analog-digital converters, serial communication, etc. 

• Tightly integrated for programmer, typically part of register 
space 

– On-chip program and data memory 

– Directprogrammeraccesstomanyofthechip’spins 

– Specialized instructions for bit-manipulation and other low-
level 



Integrated Circuit Technology 
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Integrated circuit (IC) technology 

source drain channel 

oxide 

gate 

Silicon substrate 

IC package IC  

 The manner in which a digital (gate-level) 

implementation is mapped onto an IC 

 IC: Integrated circuit, or “chip” 

 IC technologies differ in their customization to a design 

 IC’s consist of numerous layers (perhaps 10 or more) 

 IC technologies differ with respect to who builds each layer 

and when 



The basic electrical component in digital systems 

Acts as an on/off switch 

Voltage at “gate” controls whether current flows 

from source to drain 

Don’t confuse this “gate” with a logic gate 

CMOS transistor 

gate 

source 

drain 

Conducts 
if gate=1 



CMOS transistor 

 Source, Drain 

 Diffusion area where electrons can flow 

 Can be connected to metal contacts (via’s) 

 Gate 

 Polysilicon area where control voltage is applied 

 Oxide 

 Si O2 Insulator so the gate voltage can’t leak 

 



Complementary Metal 

Oxide Semiconductor 

• We refer to logic levels 

– Typically 0 is 0V, 1 is Vdd 

• Two basic CMOS types 

– nMOS conducts if gate=1 

– pMOS conducts if gate=0 

– Hence “complementary” 

• Basic gates 

– Inverter, NAND, NOR 

CMOS transistor implementations 
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IC technology 

NAND 



IC Technologies 

 Three types of IC technologies 

 Full-custom/VLSI 

 Semi-custom ASIC (gate array and standard cell) 

 PLD (Programmable Logic Device) 

 



Full-custom 

 Very Large Scale Integration (VLSI) 

 All layers are optimized for an embedded system’s particular 
digital implementation 

 Placement 

 Place and orient transistors 

 Routing 

 Connect transistors 

 Sizing 

 Make fat, fast wires or thin, slow wires 

 May also need to size buffer 

 Benefits 

 Excellent performance, small size, low power 
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Full-custom/VLSI 

 

 

 

 

 

 

 

 

 Drawbacks 

 High NRE cost (e.g., $300k), long time-to-market 

 

 Hand design 

 Horrible time-to-
market/flexibility/NRE cost… 

 Reserve for the most important units 
in a processor 

 ALU, Instruction fetch… 

 Physical design tools 

 Less optimal, but faster… 
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Semi-custom 

 Lower layers are fully or partially built 

 Designers are left with routing of wires and maybe 

placing some blocks 

 Benefits 

 Good performance, good size, less NRE cost than a full-

custom implementation (perhaps $10k to $100k) 

 Drawbacks 

 Still require weeks to months to develop 



Semi-custom 

 Gate Array 

 Array of prefabricated gates 

 “place” and route 

 Higher density, faster time-to-market 

 Does not integrate as well with full-custom 

 

 Standard Cell 

 A library of pre-designed cell 

 Place and route 

 Lower density, higher complexity 

 Integrate great with full-custom 

 

Gate array 

Standard Cell 



Semi-custom 



PLD (Programmable Logic Device) 

 Programmable Logic Device 

 Programmable Logic Array, Programmable Array Logic, Field Programmable 
Gate Array 

 The layout is composed of an array of elementary programmable modules 

implementing a generic logic function and the interconnection among 

modules.  

 The layout and fabrication process of each device is completed in advance 

and independently of the application. The device customization is obtained 

by programming on-site the device (after production) 

 



PLD (Programmable Logic Device) 

 There are different degrees of programmability : 

 one-time programmable (OTP): the configuration of the chip is 

irreversible and is obtained by applying electric voltages higher 

than those of normal power 

 reprogrammable : the configuration can be done several times 

offline; interconnections are driven by the bits of a circuit of the 

volatile memory (static RAM) or persistent (EEPROM, Flash) 

 reconfigurable: the configuration can be performed several times 

while the circuit is running and selectively 



27 

PLD (Programmable Logic Device) 

 Benefits 

 Very low NRE costs 

 Immediate turn-around-time 

 Drawback 

 High unit cost, bad for large volume 

 Power 

 Except special PLA 

 Low performance and integration density with respect to other 
design styles 

 

 Suitable for low volumes and for prototyping phases. 
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FPGA 

CLB: Configurable Logic Block 

IOB: I/O Block 

 



Configurable Logic Block (CLB) 



I/O block 
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General-

purpose 

processor 

 

ASIP 
Single- 
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Semi-custom PLD Full-custom 
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Design Technology 



Design Technology 

• A procedure for designing a system 

• Many systems are complex and pose many design 

challenges: Large specifications, short time-to-market, high 

performance, multiple designers, interface to manufacturing. 

• Proper design methodology helps to manage the design 

process and improves quality, performance and design costs 



Design flow 

• A sequence of design steps in a design methodology 

• The design flow can be partially or fully automated 

• A set or tools can be used to automate the methodology 

steps: 

– Software engineering tools, 

– Compilers, 

– Computer-Aided Design tools, 

– etc 
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Design Technology 

Libraries/IP: Incorporates pre-

designed implementation from 

lower abstraction level into 

higher level. 

System 

specification 

Behavioral 

specification 

RT 

specification 

Logic 

specification 

To final implementation 

Compilation/Synthesis: 

Automates exploration and 

insertion of implementation 

details for lower level. 

Test/Verification: Ensures 

correct functionality at each 

level, thus reducing costly 

iterations between levels. 
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IC Design Steps 

Specifications Specifications 
High-level 

Description 

High-level 

Description 

Functional 

Description 

Functional 

Description 

Behavioral 

VHDL, C 

Structural 

VHDL 



IC Design Steps 

Packaging 

Fabri- 
cation 

Physical 

Design 

Technology 

Mapping 

Synthesis 

Specifications Specifications 
High-level 

Description 

High-level 

Description 

Functional 

Description 

Functional 

Description 

Placed 

& Routed 

Design 

Placed 

& Routed 

Design 

X=(AB*CD)+ 

     (A+D)+(A(B+C)) 

Y = (A(B+C)+AC+ 

       D+A(BC+D)) 

Gate-level 

Design 

Gate-level 

Design 
Logic 

Description 

Logic 

Description 



Circuit Models 

A model of a circuit is an abstraction 

A representation that shows relevant features 
without associated details 

Circuit Model 

(few details) 

Circuit Model 

(few details) 

Circuit Model 

(many details) 

Circuit Model 

(many details) 
Synthesis Synthesis 



Model Classification 



Views of a Model 

Behavioral 

Describe the function of a circuit regardless of its 
implementation 

Structural 

Describe a model as an interconnection of 
components 

Physical 

Relate to the physical object (e.g., transistors) of a 
design 



The Y-chart 

Architectural-level 

Logic-level 

Geometrical-level 

Behavioral-view Structural-view 

Physical-view 

GajskiandKuhn’sY-chart 

(Silicon Compilers, Addison-Wesley, 1987) 



The Y-chart 

Behavioral-view Structural-view 

Physical-view 

Architectural 

level 

Logic level 

Geometrical 
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PC = PC + 1; 

Fetch(PC); 

Decode(Inst); 

... 

MULT 

ADD 

RAM 

CTRL 

S0 

S2 

S3 S1 



Synthesis 

Architectural-level 

Logic-level 

Geometrical-level 

Behavioral-view Structural-view 

Physical-view 

High-level synthesis 

(or architectural synthesis) 

Logic synthesis 

Physical design 

 Assignment to resources 

 Interconnection 

 Scheduling 

 Interconnection of istances 

of library cells (technology 

mapping) 

 Physical layout of the chip 

(placement, routing) 
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Moore’sLaw 

Gordon Moore predicted in 1965 that the number of transistors that can 
be integrated on a die would double every 18 months. 



Device Complexity 

Exponential increase in device 

complexity 

Increasing with Moore's law (or faster)! 

Require exponential increases in design 

productivity 

We have exponentially more transistors! We have exponentially more transistors! 



Heterogeneity on Chip 

Greater diversity of on chip elements 

Processors 

Software 

Memory 

Analog 

 

More transistors doing different things! More transistors doing different things! 



Stronger Market Pressures 

Time–to-market 

Decreasing design window 

Less tolerance for design revisions 
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Design productivity gap 

Role of EDA: close the productivity gap
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Design productivity gap 
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 While designer productivity has grown at an impressive rate 

over the past decades, the rate of improvement has not kept 

pace with chip capacity 
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Design productivity gap 
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 1981 leading edge chip required 100 designer months 

 10,000 transistors  /  100 transistors/month 

 2002 leading edge chip requires 30,000 designer months 

 150,000,000  /  5000 transistors/month 

 Designer cost increase from $1M to $300M 



 The situation is even worse than the productivity gap indicates 

 In theory, adding designers to team reduces project completion time 

 In reality, productivity per designer decreases due to complexities of team management 

and communication  

 In the software community, known as “the mythical man-month” (Brooks 1975) 

 At some point, can actually lengthen project completion time! (“Too many cooks”) 

• 1M transistors, 1 

designer=5000 trans/month 

• Each additional designer 

reduces for 100 trans/month 

• So 2 designers produce 4900 

trans/month each 
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Managing the design productivity crisis 

•  IP (Intellectual Property) Reuse 

 Assembly of predesigned Intellectual 

 Property components, often from external vendors 

 Soft and Hard IPs  

• System-Level Design and verification  

 Rather than at the RTL or gate-level 

 Focus on Interface and Communication 

 

 

  



Evolution of Design Methodology 

We are now entering the era of block-based 
design 

ASIC/ASSP 

Design 

System-Board 

Integration 

Yesterday 

Bus Standards, 

Predictable, Preverified 

Today 

VSI Compatible Standards, 

Predictable, Preverified 

IP/Block 

Authoring 

System-Chip 

Integration 



Evolution of SoC Platforms 

General-purpose 

Scalable RISC 

Processor 

 to 300+ MHz 50•

 bit or 64-bit-32•

 

Library of Device 

IP Blocks 

 Image•

coprocessors 

 DSPs•

 UART•

 1394•

 USB•

Scalable VLIW 

Media Processor: 

 to 300+ MHz 100•

 bit or 64-bit-32•

 

Nexperia™ 

System Buses 

 bit 32-128•

2 Cores: Philips’NexperiaPNX8850 SoC platform for High-end digital video (2001) 



What’s Happening in SoCs? 

Technology: no slow-down in sight! 

Faster and smaller transistors: 90  65  45  32  22 nm 

…butslowerwires,lowervoltage,morenoise! 
80% or more of the delay of critical paths will be due to interconnects 

Design complexity: from 2 to 10 to 100 cores! 
Design reuse is essential 

…butdifferentiation/innovationiskeyforwinningonthe
market! 

Performance and power: 
Performance requirements keep going up 

…butpowerbudgetsdon’t! 



Communication Architectures 

Shared bus 

Low area 

Poor scalability 

High energy consumption 

 

Network-on-Chip 

Scalability and modularity 

Low energy consumption 

Increase of design complexity 

Shared bus 

IP IP IP 

IP IP IP 

IP IP IP IP 

IP IP IP IP 

IP IP IP IP 

IP IP IP IP 



Intel’s Teraflops 

100 Million transistors 

80 cores, 160 FP engines 

Teraflops perf. @ 62 Watts 

On-die mesh network 

Power aware design 


