Embedded Systems technologies

Riferimenti bibliografici

"Embedded System Design: A Unified Hardware/Software Introduction", Frank Vahid, Tony Givargis, John Wiley \& Sons Inc., ISBN:0-471-38678-2, 2002.
"Computers as Components: Principles of Embedded Computer Systems Design ", Wayne Wolf, Morgan Kaufmann Publishers, ISBN: 1-55860-541-X, 2001
Embedded System Design" by Peter Marwedel, Kluwer Academic Publishers, ISBN: 1-4020-7690-8,

Three key embedded system technologies

\square Technology
\square A manner of accomplishing a task, especially using technical processes, methods, or knowledge
\square Three key technologies for embedded systems
\square Processor technology

- IC technology
\square Design technology

Processor technology

The architecture of the computation engine used to implement a system's desired functionality\square Processor does not have to be programmable

- "Processor" not equal to general-purpose processor

Processor technology

\square Processors vary in their customization for the problem at hand

General-purpose processor

Application-specific processor

Single-purpose processor

General-purpose processors

- Programmable device used in a variety of applications
- Also known as "microprocessor"
- Features
- Program memory
- General datapath with large register file and general ALU
- User benefits
- Low time-to-market and NRE costs
- High flexibility
- Drawbacks
- High unit cost
- Low Performance

General-purpose processors

$$
\begin{aligned}
& \text { total }=0 ; \\
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++) \\
& \quad \text { total }+=\mathrm{C}[\mathrm{i}]^{*} \mathrm{M}[\mathrm{i}] ;
\end{aligned}
$$

```
init: daddi r8, r0, 0
    daddi r9, r0, 40
    daddi r10, r0, 0
for: ld r11, M(r8)
    ld r12, C(r8)
    mult r11, r12
    mflo r11
    dadd r10, r10, r11
    daddi r8, r8, 8
    bne r8, r9, for
    sd rl0, total(r0)
```


Single-purpose processors

- Digital circuit designed to execute exactly one program
- a.k.a. coprocessor, accelerator or peripheral
- Features
- Contains only the components needed to execute a single program
- No program memory
- Benefits

- Fast
- Low power
- Drawbacks
- No flexibility, high time-to-market, high NRE cost

Single-purpose processors

```
total = 0;
for (i=0;i<N;i++)
        total +=
C[i]*M[i];
```


Application-specific processors

- Programmable processor optimized for a particular class of applications having common characteristics
\square Compromise between general-purpose and singlepurpose processors
- Features
- Program memory
- Optimized datapath
- Special functional units
- Benefits
- Some flexibility, good performance, size and power
- Drawbacks

\square High NRE cost (processor and compiler)
- Examples: Microcontroller, DSP

Application-specific processors

Macc $R a, R b, R c \quad ; \quad R a=R a+R b * R b$

Bltid Ra, Rb , target ; if $(\mathrm{Ra}<\mathrm{Rb})\{R a+=8 ;$ j target $\}$

$$
\begin{array}{ll}
\text { init: } & \text { daddi } r 8, r 0,0 \\
& \text { daddi } r 9, r 0,32 \\
& \text { daddi } r 10, r 0,0 \\
\text { for: } & l d r 11, M(r 8) \\
& l d r 12, C(r 8) \\
& \text { macc r10, r11, r12 } \\
& \text { bltid r8, r9, for } \\
& \text { sd r10, total(r0) }
\end{array}
$$

Digital Signal Processors (DSP)

- For signal processing applications
- Large amounts of digitized data, often streaming
- Data transformations must be applied fast
- e.g., cell-phone voice filter, digital TV, music synthesizer
- DSP features
- Several instruction execution units
- Multiple-accumulate single-cycle instruction, other instrs.
- Efficient vector operations - e.g., add two arrays
- Vector ALUs, loop buffers, etc.

A Common ASIP: Microcontroller

- For embedded control applications
- Reading sensors, setting actuators
- Mostly dealing with events (bits): data is present, but not in huge amounts
- e.g. disk drive, digital camera (assuming SPP for image compression), washing machine, microwave oven

- Microcontroller features
- On-chip peripherals
- Timers, analog-digital converters, serial communication, etc.
- Tightly integrated for programmer, typically part of register space
- On-chip program and data memory
- Direct programmer access to many of the chip's pins
- Specialized instructions for bit-manipulation and other lowlevel

Integrated Circuit Technology

Integrated circuit (IC) technology

\square The manner in which a digital (gate-level) implementation is mapped onto an IC
\square IC: Integrated circuit, or "chip"
\square IC technologies differ in their customization to a design
\square IC's consist of numerous layers (perhaps 10 or more)

- IC technologies differ with respect to who builds each layer and when

CMOS transistor

The basic electrical component in digital systems
Acts as an on/off switch
Voltage at "gate" controls whether current flows
from source to drain
Don't confuse this "gate" with a logic gate

CMOS transistor

Source, Drain

- Diffusion area where electrons can flow
- Can be connected to metal contacts (via's)
\square Gate
- Polysilicon area where control voltage is applied
\square Oxide
- $\mathrm{Si} \mathrm{O}_{2}$ Insulator so the gate voltage can't leak

CMOS transistor implementations

Complementary Metal
Oxide Semiconductor

- We refer to logic levels

$$
\text { - Typically } 0 \text { is } 0 V, 1 \text { is } \mathrm{Vdd}
$$

- Two basic CMOS types
- nMOS conducts if gate=1
- pMOS conducts if gate $=0$
- Hence "complementary"
- Basic gates
- Inverter, NAND, NOR

NAND gate

IC technology

NAND

IC Technologies

\square Three types of IC technologies
\square Full-custom/VLSI
\square Semi-custom ASIC (gate array and standard cell)
\square PLD (Programmable Logic Device)

Full-custom

\square Very Large Scale Integration (VLSI)
\square All layers are optimized for an embedded system's particular digital implementation
\square Placement

- Place and orient transistors
\square Routing
- Connect transistors
\square Sizing
- Make fat, fast wires or thin, slow wires
- May also need to size buffer
\square Benefits
\square Excellent performance, small size, low power

Full-custom/VLSI

\square Hand design

- Horrible time-tomarket/flexibility/NRE cost...
\square Reserve for the most important units in a processor
- ALU, Instruction fetch...
\square Physical design tools
- Less optimal, but faster...

\square Drawbacks
\square High NRE cost (e.g., \$300k), long time-to-market

Semi-custom

\square Lower layers are fully or partially built
\square Designers are left with routing of wires and maybe placing some blocks
\square Benefits
\square Good performance, good size, less NRE cost than a fullcustom implementation (perhaps $\$ 10 \mathrm{k}$ to $\$ 100 \mathrm{k}$)
\square Drawbacks
\square Still require weeks to months to develop

Semi-custom

\square Gate Array

- Array of prefabricated gates
- "place" and route
- Higher density, faster time-to-market
\square Does not integrate as well with full-custom
\square Standard Cell
\square A library of pre-designed cell
- Place and route
- Lower density, higher complexity
- Integrate great with full-custom

Standard Cell

Semi-custom

PLD (Programmable Logic Device)

\square Programmable Logic Device

- Programmable Logic Array, Programmable Array Logic, Field Programmable Gate Array
\square The layout is composed of an array of elementary programmable modules implementing a generic logic function and the interconnection among modules.
\square The layout and fabrication process of each device is completed in advance and independently of the application. The device customization is obtained by programming on-site the device (after production)

PLD (Programmable Logic Device)

\square There are different degrees of programmability :

- one-time programmable (OTP): the configuration of the chip is irreversible and is obtained by applying electric voltages higher than those of normal power
\square reprogrammable : the configuration can be done several times offline; interconnections are driven by the bits of a circuit of the volatile memory (static RAM) or persistent (EEPROM, Flash)
\square reconfigurable: the configuration can be performed several times while the circuit is running and selectively

PLD (Programmable Logic Device)

\square Benefits
\square Very low NRE costs

- Immediate turn-around-time
\square Drawback
\square High unit cost, bad for large volume
\square Power
- Except special PLA
\square Low performance and integration density with respect to other design styles
\square Suitable for low volumes and for prototyping phases.

FPGA

CLB: Configurable Logic Block IOB: I/O Block

Configurable Logic Block (CLB)

Figure 1: SImplifled Block Dlagram of XC4000-Serles CLB (RAM and Carry Logle functions not shown)

I/O block

Independence of processor and IC

technologies

Design Technology

Design Technology

- A procedure for designing a system
- Many systems are complex and pose many design challenges: Large specifications, short time-to-market, high performance, multiple designers, interface to manufacturing.
- Proper design methodology helps to manage the design process and improves quality, performance and design costs

Design flow

- A sequence of design steps in a design methodology
- The design flow can be partially or fully automated
- A set or tools can be used to automate the methodology steps:
- Software engineering tools,
- Compilers,
- Computer-Aided Design tools,
- etc

Design Technology

Compilation/Synthesis: Automates exploration and insertion of implementation details for lower level.

Libraries/IP: Incorporates predesigned implementation from lower abstraction level into higher level.

Test/Verification: Ensures correct functionality at each level, thus reducing costly iterations between levels.

IC Design Steps

IC Design Steps

$$
\begin{gathered}
X=\left(A B^{*} C D\right)+ \\
(A+D)+(A(B+C)) \\
y-(A(B+C)+A C+ \\
D+A(B C+D))
\end{gathered}
$$

Circuit Models

\square A model of a circuit is an abstraction \Rightarrow A representation that shows relevant features without associated details

Model Classification

Views of a Model

Behavioral

- Describe the function of a circuit regardless of its implementation
- Structural
\rightarrow Describe a model as an interconnection of components
Physical
\Rightarrow Relate to the physical object (e.g., transistors) of a design

The Y-chart

Gajski and Kuhn's Y-chart
(Silicon Compilers, Addison-Wesley, 1987)

The Y-chart

Synthesis

Moore's Law

■Gordon Moore predicted in 1965 that the number of transistors that can be integrated on a die would double every 18 months.

Device Complexity

-Exponential increase in device complexity
\Rightarrow Increasing with Moore's law (or faster)!
■Require exponential increases in design productivity

We have exponentially more transistors!

Heterogeneity on Chip

■Greater diversity of on chip elements
-Processors
\rightarrow Software
\Rightarrow Memory
\rightarrow Analog

More transistors doing different things!

Stronger Market Pressures

■Time-to-market
\rightarrow Decreasing design window
\rightarrow Less tolerance for design revisions

Design productivity gap

Role of EDA: close the productivity gap

Design productivity gap

\square While designer productivity has grown at an impressive rate over the past decades, the rate of improvement has not kept pace with chip capacity

Design productivity gap

$\square 1981$ leading edge chip required 100 designer months

- 10,000 transistors / 100 transistors/month
$\square 2002$ leading edge chip requires 30,000 designer months
- 150,000,000 / 5000 transistors/month
\square Designer cost increase from $\$ 1 \mathrm{M}$ to $\$ 300 \mathrm{M}$

The mythical man-month

\square The situation is even worse than the productivity gap indicates
\square In theory, adding designers to team reduces project completion time

- In reality, productivity per designer decreases due to complexities of team management and communication
\square In the software community, known as "the mythical man-month" (Brooks 1975)
\square At some point, can actually lengthen project completion time! ("Too many cooks")
- 1 M transistors, 1 designer=5000 trans/month
- Each additional designer reduces for 100 trans/month
- So 2 designers produce 4900 trans/month each

Managing the design productivity crisis

- IP (Intellectual Property) Reuse
- Assembly of predesigned Intellectual
- Property components, often from external vendors
- Soft and Hard IPs
- System-Level Design and verification
\square Rather than at the RTL or gate-level
- Focus on Interface and Communication

Evolution of Design Methodology

■We are now entering the era of block-based design

Yesterday
Bus Standards,
Predictable, Preverified

Evolution of SoC Platforms

Scalable VLIW
Media Processor:

- 100 to 300+ MHz
- 32-bit or 64-bit

Nexperia ${ }^{\text {TM }}$ System Buses - 32-128 bit

2 Cores: Philips' Nexperia PNX8850 SoC platform for High-end digital video (2001)

What's Happening in SoCs?

■Technology: no slow-down in sight!
Faster and smaller transistors: $90 \rightarrow 65 \rightarrow 45 \rightarrow 32 \rightarrow 22 \mathrm{~nm}$
\rightarrow... but slower wires, lower voltage, more noise!
$\checkmark 80 \%$ or more of the delay of critical paths will be due to interconnects
■Design complexity: from 2 to 10 to 100 cores!
\Rightarrow Design reuse is essential
\rightarrow...but differentiation/innovation is key for winning on the market!
■Performance and power:
\rightarrow Performance requirements keep going up
\rightarrow...but power budgets don't!

Communication Architectures

■Shared bus

- Low area
\Rightarrow Poor scalability
- High energy consumption

-Network-on-Chip
\rightarrow Scalability and modularity
\rightarrow Low energy consumption
\rightarrow Increase of design complexity

Intel's Teraflops

■100 Million transistors
■80 cores, 160 FP engines
■Teraflops perf. @ 62 Watts
■On-die mesh network
■ower aware design

